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Introduction 
Many of today’s DSP applications are subject to real- time constraints.  Many 

applications will eventually grow to a point where they are stressing the available CPU 

and memory resources.  Understanding the workings of the DSP architecture, compiler, 

and the application algorithms can speed up applications, sometimes by an order of 

magnitude.   This article will summarize some of the techniques that can improve the 

performance of your code in terms of cycle count, memory use, and power consumption. 

What Is Optimization? 
Optimization is a procedure that seeks to maximize or minimize one or more 

performance indices.  These indices include; 

o Throughput (execution speed) 

o Memory usage 

o I/O bandwidth 

o Power dissipation 

 

Since many DSP systems are real- time systems, at least one (and probably more) of 

these indices must be optimized.  It is difficult (and usually impossible) to optimize all 

these performance indices at the same time. For example, making the application faster 

may require more memory and vice versa.  The designer must weigh each of these 

indices and make the best tradeoff 

Determining which index or set of indices are important to optimize depends on the 

goals of the application developer.  For example, optimizing for performance means that 

the developer can use a slow or less expensive DSP to do the same amount of work.  In 

some embedded systems, cost savings like this can have a significant impact on the 



success of the product.  The developer can alternatively choose to optimize the 

application to allow the addition of more functionality.  This may be very important if the 

additional functionality improves the overall performance of the system, or if the 

developer can add more capability to the system such as an additional channel of a base 

station system.  Optimizing for memory use can also lead to overall system cost 

reduction.  Reducing the application size leads to a lower demand for memory which 

reduces overall system cost.  And finally, optimizing for power means that the 

application can run longer on the same amount of power.  This is important for battery 

powered applications.  This type of optimization also reduces the overall system cost with 

respect to power supply requirements and other cooling functionality required. 

The tricky part to optimizing DSP applications is to understand the tradeoff between 

the various performance indices.  For example, optimizing an application for speed often 

means a corresponding decrease in power consumption but an increase in memory usage.  

Optimizing for memory may also result in a decrease in power consumption due to fewer 

memory accesses but a offsetting decrease in code performance.  The various tradeoffs 

and system goals must be understood and considered before attempting any form of 

application optimization. 

Make The Common Case Fast 
The fundamental rule in computer design as well as programming real- time DSP-

based systems is “make the common case fast, and favor the frequent case”.    This is 

really just Amdahl’s Law that says the performance improvement to be gained using 

some faster mode of execution is limited by how often you use that faster mode of 

execution.  So don’t spend time trying to optimize a piece of code that will hardly ever 

run.  You won’t get much out of it, no matter how innovative you are.  Instead, if you can 

eliminate just one cycle from a loop that executes thousands of times, you will see a 

bigger impact on the bottom line. 

1. Make the Common Case Fast – DSP Architectures 
DSP architectures are designed to make the common case fast.  Considering many 

DSP applications are composed from a standard set of DSP building blocks such as 

filters, Fourier Transforms, and convolutions.  These algorithms all share a common 



characteristic;  they perform multiplies and adds over and over again (Figure 1).  This is 

generally referred to as the Sum of Products (SOP).   DSP chip designers have developed 

hardware architectures that allow the efficient execution of algorithms with SOPs.  This 

is done using specialized instructions such as single cycle multiple and accumulate 

(MAC), architectures that all multiple memory accessed in a single cycle (Harvard 

achitectures, Figure 2) and special hardware that handles loop counting with very little 

overhead. 

 
Discrete Fourier Transform 

 

Filter algorithm 

Figure 1 – DSP algorithms are composed of iterations of multiplies and adds  

 

 

 

Figure 2 – Harvard Architecture.  The separation of program and data provides 

increased performance for DSP applications (Wolf, page 59) 

2. Make the Common Case Fast – DSP Algorithms 
DSP algorithms can be made to run faster using techniques of algorithmic 

transformation.  For example, a common algorithm used in DSP applications is the 

Fourier Transform.  The Fourier Transform is a mathematical method of breaking a 
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signal in the time domain into all of its individual frequency components1.  The process 

of examining a time signal broken down into its individual frequency components is also 

called spectral analysis or harmonic analysis. 

There are different ways to characterize a Fourier transforms; 

o The Fourier Transform (FT) is a mathematical formula using integrals  

 

 
o The Discrete Fourier Transform (DFT) is a discrete numerical equivalent 

using sums instead of integrals which maps well to a digital processor like a 

DSP 

 
 

o The Fast Fourier Transform (FFT) is just a computationally fast way to 

calculate the DFT which reduces many of the redundant computations of the 

DFT. 

 

How these are implemented on a DSP has a significant impact on overall 

performance of the algorithm.  The FFT, for example, is a fast version of the DFT.   The 

FFT makes use of periodicities in the sines that are multiplied to perform the transform.  

This significantly reduces the amount of calculations required.   A DFT implementation 

requires N^2 operations to calculate a N point transform.  For the same N point data set, 

using a FFT algorithm requires N * log2(N) operations.  The FFT is therefore faster than 

the DFT by a factor of  N/log2(n).  The speedup for a FFT is more significant as N 

increases (Figure 3). 

                                                 
1 Brigham, E. Oren, 1988, The Fast Fourier Transform and Its Applications, Englewood Cliffs, NJ: 

Prentice-Hall, Inc., 448 pp. 



Figure 3.  FFT vs DFT for various sizes of transforms (logarithmic scale) 

 

Recognizing the significant impact that efficiently implemented algorithms have on 

overall system performance, DSP vendors and other providers have developed libraries of 

efficient DSP algorithms optimized for specific DSP architectures.  Depending on the 

type of algorithm, these can downloaded from web sites (be careful of obtaining free 

software like this – the code may be buggy as there  is no guarantee of quality) or bought 

from DSP solution providers. 

3. Make the Common Case Fast – DSP Compilers  
Just a few years ago, it was an unwritten rule that writing programs in assembly 

would usually result in better performance than writing in higher level languages like C 

or C++. The early “optimizing” compilers solved the problem of "optimization" at too 

general and simplistic a level.  The results were not as good as a good assembly language 

programmer. Compilers have gotten much better and today there are very specific high 

performance optimizations performed that compete well with even the best assembly 

language programmers. 

A general optimization strategy is to write DSP application code that can be 

pipelined efficiently by the compiler..  Software pipelining is an optimization strategy to 

schedule loops and functional units efficiently.  In the case of the C6200 family of DSP, 
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there are eight functional units that can be used at the same time (Figure 4).   Its up to the 

compiler to figure out how to schedule instructions on all of these units for each clock 

cycle.  Sometimes is a matter of a subtle change in the way the C code is structured that 

makes all the difference.  In software pipelining, multiple iterations of a loop are 

scheduled to execute in parallel.  The loop is reorganized in a way that each iteration in 

the pipelined code is made from instruction sequences selected from different iterations 

in the original loop.   

Figure 4.  DSP Architectures may have orthogonal execution units and data 

paths used to execute DSP algorithms more efficiently 

 

 
 
Figure 5 shows a sample piece of C code and the corresponding assembly language 

output.  In this example, the pipelined code is not as good as it could be.  You can spot 

inefficient code by looking for how many NOPs are in the piped loop kernel of the code.  

In this case the piped loop kernel has a total of 5 NOP cycles, 2 in line 16, and 3 in line 

20.  This loop takes a total of 10 cycles to execute.  The NOPs are the first indication that 

a more efficient loop may be possible.   

 
1 void example1(float *out, float *input1, float 

*input2) 
2 { 
3   int i; 
4 
5   for(i = 0; i < 100; i++)  
6    { 
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7       out[i] = input1[i] * input2[i]; 
8    } 
9 } 
 
1 _example1: 
2 ;** --------------------------------------------------

-------* 
3            MVK        .S2    0x64,B0 
4  
5            MVC        .S2    CSR,B6 
6 ||         MV         .L1X      B4,A3 
7 ||         MV         .L2X      A6,B5 
 
8            AND        .L1X      -2,B6,A0 
9            MVC     .S2X      A0,CSR 
10 ;** ---------------------------------------------

------------* 
11 L11:        ; PIPED LOOP PROLOG 
12 ;** ---------------------------------------------

------------* 
13 L12:        ; PIPED LOOP KERNEL 
 
14            LDW        .D2       *B5++,B4      ; 
15 ||         LDW        .D1       *A3++,A0     ; 
 
16            NOP                2 
17 [ B0]      SUB        .L2       B0,1,B0       ; 
18    [ B0]      B          .S2       L12              ; 
19            MPYSP      .M1X      B4,A0,A0     ; 
20            NOP                  3 
21            STW        .D1       A0,*A4++    ; 
22 ;** ---------------------------------------------

-----------* 
23            MVC        .S2       B6,CSR 
24            B          .S2       B3 
25            NOP                  5 
26            ; BRANCH OCCURS 
 

Figure 5.  C example and the corresponding pipelined assembly language 
output 

 
In this example, the compiler did not optimize the loop efficiently because of the 

possible dependencies on the two input arrays.  The programmer can explicity indicate in 

the code that these two arrays are not dependent and the compiler will apply more 

aggressive software pipelining optimizations to this code.  By declaring the input1 and 



input2 arrays as “const” (see the code fragment below)  allows the compiler to enable 

software pipelining which reduces the number of overall cycles to complete the 

operation.  This C code is shown in Figure 6 with the corresponding assembly language.  

 
1 void example2(float *out, const float *input1, const float *input2) 
2 { 
3   int i; 
4 
5   for(i = 0; i < 100; i++)  
6    { 
7       out[i] = input1[i] * input2[i]; 
8    } 
9 } 

 
 
1 _example2: 
2 ;** ---------------------------------------------------------------* 
3            MVK      .S2             0x64,B0 
4 
5            MVC           .S2             CSR,B6 
6 ||         MV            .L1X            B4,A3 
7 ||         MV            .L2X            A6,B5 
8 
9            AND           .L1X           -2,B6,A0 
10 
11            MVC           .S2X           A0,CSR 
12 ||         SUB           .L2            B0,4,B0 
13 
14 ;** --------------------------------------------------------------* 
15 L8:        ; PIPED LOOP PROLOG 
16 
17            LDW           .D2            *B5++,B4     ; 
18 ||         LDW           .D1            *A3++,A0     ; 
19 
20            NOP                          1 
21 
22            LDW           .D2            *B5++,B4     ;@ 
23 ||         LDW           .D1            *A3++,A0     ;@ 
24  
25    [ B0]   SUB           .L2            B0,1,B0      ; 
26 
27    [ B0]   B             .S2            L9           ; 
28 ||         LDW           .D2            *B5++,B4     ;@@ 
29 ||         LDW           .D1            *A3++,A0     ;@@ 
30 
31            MPYSP         .M1X           B4,A0,A5      ; 
32 || [ B0]   SUB           .L2            B0,1,B0       ;@ 
33  
34    [ B0]   B             .S2            L9            ;@ 
35 ||         LDW           .D2            *B5++,B4      ;@@@ 
36 ||         LDW           .D1            *A3++,A0      ;@@@ 
37  
38            MPYSP         .M1X           B4,A0,A5      ;@ 
39 || [ B0]   SUB           .L2            B0,1,B0       ;@@ 
40 
41 ;** --------------------------------------------------------------* 
42 L9:        ; PIPED LOOP KERNEL 
43 
44    [ B0]   B             .S2            L9           ;@@ 



45 ||         LDW           .D2            *B5++,B4     ;@@@@ 
46 ||         LDW           .D1            *A3++,A0     ;@@@@ 
47  
48            STW           .D1            A5,*A4++     ; 
49 ||         MPYSP         .M1X           B4,A0,A5     ;@@ 
50 || [ B0]   SUB           .L2            B0,1,B0      ;@@@ 
51 
52 ;** --------------------------------------------------------------* 
53 L10:        ; PIPED LOOP EPILOG 
54            NOP                          1 
55 
56            STW           .D1            A5,*A4++     ;@ 
57 ||         MPYSP         .M1X           B4,A0,A5     ;@@@ 
58  
59            NOP                          1 
60 
61            STW           .D1            A5,*A4++     ;@@ 
62 ||         MPYSP         .M1X           B4,A0,A5     ;@@@@ 
 
64            NOP                         1 
65            STW           .D1           A5,*A4++      ;@@@ 
66            NOP                         1 
67            STW           .D1           A5,*A4++      ;@@@@ 
68 ;** --------------------------------------------------------------* 
69             MVC          .S2            B6,CSR 
70             B            .S2            B3 
71             NOP                         5 
72            ; BRANCH OCCURS 

 
Figure 6.  Corresponding pipelined assembly language output (the loop is now 

only 2 cycles long which dramatically improves performance for large loops) 
 
 
The code size for a pipelined function becomes larger, which is obvious by looking 

at the output assembly code shown in the example.  This is one of the tradeoffs (code size 

versus speed) that the embedded programmer must make. 

Summary 
Embedded real-time applications are an exercise in optimization.  There are three 

main optimization strategies that the embedded DSP developer needs to consider; 

 

o DSP architecture optimization;  DSPs are optimized microprocessors that 

perform signal processing functions very efficiently by providing hardware 

support for common DSP functions, 

o DSP algorithm optimization;  choosing the right implementation technique 

for standard and often used DSP algorithms can have a significant impact on 

system performance, 



o DSP complier optimization; DSP compilers are tools that help the embedded 

programmer exploit the DSP architecture by mapping code onto the resources 

in such as way as to utilize as much of the processing resources as possible, 

gaining the highest level of architecture entitlement as possible. 


